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 Abstract. With the ever-growing database 
sizes, we have enormous quantities of data, but 
unfortunately we cannot use raw data in our day-to-
day reasoning/decisions. We desperately need 
knowledge. This knowledge is in most cases in the 
gathered data, but the extraction of it is a very time 
and resources consuming operation. Association rule 
mining finds interesting association or correlation 
relationships among a large set of data items. The 
paper presents some considerations about distributed 
association rules mining together with a comparison 
between two representative distributed algorithms, 
namely CDA and FDM. The compared algorithms are 
presented together with some experimental data that 
leads to the final conclusions. 
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1. INTRODUCTION 
 
The continuing growth of database sizes and mainly the 
stringent need of pertinent information for decision 
support increased the interest in automatic knowledge 
discovery in databases. 

The implicit information within databases, and mainly the 
interesting association relationships among sets of objects, 
that lead to association rules, may disclose useful patterns 
for decision support, financial forecast, marketing policies, 
even medical diagnosis and many other applications. This 
fact has attracted a lot of attention in recent data mining 
research (Fayyad et al. 1996). As shown by Agrawal and 
Shrikant (1994), mining association rules may require 
iterative scanning of large databases, which is costly in 
processing. Many authors focussed their work on efficient 
mining of association rules in databases [(Agrawal and 
Shrikant 1994), (Han et al. 2000), (Dunham 2003), 
(Fayyad et al. 1996), (Han and Kamber 2001)]. 

Association rule mining finds interesting association or 
correlation relationships among a large set of data items 

(Han and Kamber 2001).  The association rules are 
considered interesting if they satisfy both a minimum 
support threshold and a minimum confidence threshold 
(Gyorodi C. and Gyorodi R. 2002a). 

A very influential association rule mining algorithm, 
Apriori (Agrawal and Shrikant 1994), has been developed 
for rule mining in large transaction databases. Many other 
algorithms developed are derivative and/or extensions of 
this algorithm. A large step forward in improving the 
performances of these algorithms was made by 
introduction of a novel, compact data structure, called 
frequent pattern tree, or FP-tree (Han J. et al. 2000), and 
the associated mining algorithms, FP-growth (Han J. et al. 
2000). Although these studies are on sequential data 
mining techniques, algorithms for parallel mining of 
association rules have been proposed recently [(Cheung et 
al. 1996), (Agrawal and Shafer 1996)]. 

The development of distributed algorithms for efficient 
mining of association rules has importance, based on the 
following reasoning. (1) Databases may store a huge 
amount of data. Mining association rules in such databases 
may require substantial processing power, and a 
distributed system is a possible solution. (2) Many large 
databases are distributed at different sites. Based on these 
observations, the study of efficient distributed algorithms 
for mining association rules is very important. Further 
more, a distributed mining algorithm can also be used to 
mine association rules in a single large database by 
partitioning the databases among a set of sites and 
processing the task in a distributed manner. 

This study assumes that the database to be studied is a 
transaction databases. The databases consist of a huge 
number of transaction records, each with a transaction 
identifier and a set of data items, and it is “horizontally” 
partitioned and allocated to the sites in a distributed 
system which communicates by message passing.  

This paper presents a comparative study of the most 
important distributed algorithms used in association rules 
mining CDA (Count Distributed Algorithm) (Agrawal and 



Shafer 1996) and FDM (Fast Distributed Mining of 
association rules) (Cheung  et al. 1996). It also includes a 
performance study that shows the advantages and 
disadvantage of the distributed algorithms CDA and FDM. 

 
2. Problem Definition 
 
The basic problem definition of association rules mining is 
given in (Agrawal and Shrikant 1994). Here are presented 
only the aspects that are specific to association rules 
mining in a distributed environment. Let D a transactional 
database with P transactions. Suppose that there are n sites 
S1, S2, ..., Sn in a distributed system and that the database is 
correspondently partitioned on the n sites into {D1, D2, ..., 
Dn}. 

Let Pi denote the dimension of partition Di for i = 1, ..., n. 
Also let X.sup and X.supi denote the support factor of the 
itemset X from D and respectively Di. X.sup is known as 
the global support counter, and X.supi as the local support 
counter for site i. For a given minimum support s, X is 
globally frequent if X.sup ≥ s × P, correspondently, X is 
locally frequent at site Si, if X.supi ≥ s × Pi. In the 
following, L will correspond to globally frequent itemsets 
from D, and L(k) to globally frequent k-itemsets from L. 
The main goal of a distributed association rules mining 
algorithm is finding the globally frequent itemsets L. 

 
3. Distributed Algorithms in Association Rules 

Mining 
 
According to (Dunham 2003) most parallel or distributed 
association rule algorithms strive to parallelize either the 
data, known as data parallelism, or the candidates, 
referred to as task parallelism. With task parallelism, the 
candidates are partitioned and counted separately at each 
processor. Obviously, the partition algorithm would be 
easy to parallelize using the task parallelism approach. 
Other dimensions in differentiating the parallel association 
rule algorithms are the load-balancing approach used and 
the architecture. The data parallelism algorithms have 
reduced communication costs over the task, because only 
the initial candidates (the set of items) and the local counts 
must be distributed at each iteration. With task parallelism, 
not only the candidates but also the local set of 
transactions must be broadcast to all other sites. However, 
the data parallelism algorithms require that memory at 
each processor be large enough to store all candidates at 
each scan (otherwise the performance will degrade 
considerably because I/O is required for both the database 
and the candidate set). The task parallelism approaches 
can avoid this because only the subset of the candidates 
that are assigned to a processor during each scan must fit 
into memory. Since not all partitions of the candidates 
must be the same size, the task parallel algorithms can 
adapt to the amount of memory at each site. The only 
restriction is that the total size of all candidates be small 
enough to fit into the total size of memory in all processors 

combined. Performance studies have shown that the data 
parallelism tasks scale linearly with the number of 
processors and the database size. Because of the reduced 
memory requirements, however, the task parallelism may 
work where data parallelism may not work. 

 
3.1. The CDA Algorithm 
 
One data parallelism algorithm is the count distribution 
algorithm (CDA). The database is divided into p partitions, 
one for each processor. Each processor counts the 
candidates for its data and then broadcasts its counts to all 
other processors. Each processor then determines the 
global counts. These then are used to determine the large 
itemsets and to generate the candidates for the next scan. 
The algorithm according to (Dunham 2003) is shown 
below. 

Input: 
I // itemsets 
p1, p2, …pp //processors 
D = D1, D2, …Dp //database divided into 
partitions 
s //support 
Output: 
L //large itemsets 
Count distribution algorithm: 
Perform in parallel at each processor p1; 
//count in parallel 
k = 0;  //k is used as the scan number 
L = ∅; 
C1 = I; //initial candidates are set to be the items 
repeat 

k = k + 1; 
Lk = ∅; 
for each Ii ∈ Ck do 

c1
i = 0; //initial counts for each itemset are 0 

for each tj ∈ D1 do 
for each Ii ∈ Ck do 

if Ii ∈ ti then 
c1

i = c1
i +1; 

broadcast c1
i to all other processors; 

for each Ii ∈ Ck do //determine global counts 
ci = ∑p

l=1 = c1
i; 

for each Ii ∈ Ck do 
if  ci ≥ (s × | D1 ∪ D2 ∪ … ∪ Dp|) then 

Lk = Lk ∪ Ii; 
L = L ∪ Lk; 
Ck+1 = Apriori-Gen(Lk) 

until Ck+1 = ∅. 
 
3.2. The FDM Algorithm 
 
The FDM (Fast Distributed Algorithm for Data Mining) 
algorithm, proposed in (Cheung  et al. 1996) has the 
following distinguishing characteristiques: 



1. Candidate set generation is Apriori-like. However, 
some interesting properties of locally and globally 
frequent itemsets are used to generate a reduced set of 
candidates at each iteration, this resulting in a 
reduction in the number of messages interchanged 
between sites. 

2. After the candidate sets were generated, two types of 
reduction techniques are applied, namely a local 
reduction and a global reduction, to eliminate some 
candidate sets from each site. 

3. To be able to determine if a candidate set is frequent, 
the algorithm needs only O(n) messages for the 
exchange of support counts, where n is the number of 
sites from the distributed system. This number is much 
less than a disrect adaptation of Apriori, which would 
need O(n2) messages for calculating the support 
counts. 

The algorithm according to (Cheung  et al. 1996) is shown 
below. 

Input: 
DBi //database partition at each site Si 
Output: 
L //set of all globally large itemsets 
Algorithm: 
Iteratively execute the following program fragment (for the k-
th iteration) distributively at each site Si. The algorithm 
terminates when either L(k) = ∅, or the set of candidate sets 
CG(k) = ∅. 
 
if k = 1 then 

Ti(1) = get_local_count(DBi, ∅, 1) 
else { 

CG(k) = ∪n
i=1 CGi(k) = ∪n

i=1 Apriori_gen(GLi(k-1)) 
Ti(k) = get_local_count(DBi, CG(k), i) } 

for  each X ∈ Ti(k) do 
if X.supi ≥ s × Di then 

for j = 1 to n do 
if polling_site(X) = Sj then 

insert 〈X, X.supi〉 into LLi,j(k) 
for j = 1 to n do 

send LLi,j(k) to site Sj 
for j = 1 to n do { 

receive LLj,i(k) 
for each X ∈ LLj,i(k) do { 

if X ∉ LPi(k) then 
insert X into LPi(k)  

update X.large_sites } } 
for each X ∈ LPi(k) do 

send_polling_request(X); 
reply_polling_request(Ti(k)) 
for each X ∈ LPi(k) do { 

receive X.supj from sites Sj 
where Sj ∉ X.large_sites 

X.sup = ∑n
i=1 X.supi 

if X.sup ≥ s × D then 
insert X into Gi(k) } 

broadcast Gi(k) 

receive Gj(k) from all other sites Sj, (j ≠ i) 
L(k) = ∪n

i=1 Gi(k) 
divide L(k) into GLi(k), (I = 1,…,n) 
return L(k). 

 
4. Comparative Study 
 
The data set used for testing the performance of the two 
algorithms, CDA and FDM, was generated according to 
(Agrawal and Shrikant 1994), by setting the number of 
items N = 100, and the maximum number of frequent 
itemsets |L| = 3000, also the mean dimension of a 
transaction |T| = 10. To test the described algorithms 2 to 5 
workstations with the following configuration: Pentium 4 
at 1.5GHz, 512 MRAM, Windows 2000 Professional OS 
and 100Mb Ethernet network were used. The algorithms 
were implemented in Java 1.4. To study the algorithms the 
support factor was varied between 0.5% and 40%. 

A first result, obtained by testing the two algorithms on 
data sets with 50000 to 520000 transactions and, as 
mentioned before, using between 2 and 5 workstations 
with a support factor of 5% is shown in Figure 1. This 
figure shows that the performance of the algorithm 
depends on the number of processors and the number of 
transactions. For a data set with 520000 transactions that 
was distributed on two workstations, the execution time 
for the CDA algorithm was 5583 seconds and for the FDM 
was 4055 seconds, while the same data set distributed on 
five workstations produced an execution time of just 1161 
seconds for the CDA algorithm and 892 seconds for the 
FDM algorithm. So, in order to obtain fairly small 
execution times, we need to increase the number of 
processors if we increase the number of transactions of the 
data set. 

For a relatively small data set distributed on a large 
number of workstations the execution time could be quite 
long because the local sets of candidates obtained for each 
site is large and the communication time between sites 
becomes considerable, as well. For example for a data set 
with 110000 transactions distributed on 2 sites the 
execution time for the CDA algorithm was 88 second and 
for the FDM algorithm 68 seconds, while the same data set 
distributed on 5 sites the execution time has risen to 120 
seconds for the CDA algorithm and to 88 seconds for the 
FDM algorithm. Thus, when increasing the number of site 
(processors) the dimension of the data set must be taken 
into account. For a relatively small data set an increase in 
number of processors could lead to large sets of local 
candidates and a large number of messages transmitted 
between sites, thus, leading to an increase in execution 
time for the CDA and FDM algorithms. 

Figure 1 shows that the performance of the 
algorithms increases with the number of processors, but 
the FDM algorithm has better performance than the CDA 
algorithm for the same number of processors and the same 
dimension of the data set, and a support factor of 5%. 
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Figure 1. Scalability by transactions and number of processors (sites) (5% support) 
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Figure 2. Scalability by support and processors (sites) (D1 520K) 



Figure 2 shows that the CDA and FDM algorithms present 
a good scalability relative to the different support factors, 
for a large data set with 520000 transactions. The 
performance of the algorithms increases with the support 
factor. Also if the number of processors is increased, the 
performance is quite good for a small support factor of 
only 5%. So, for a data set with 520000 transactions 
distributed on 5 workstations and a support factor of 5% 
the execution time for the FDM algorithm is 892 seconds 
and for the CDA algorithm is 1161 seconds, meanwhile, 
for the same data set distributed on 2 workstations, the 
execution times increased five times, reaching 4055 for the 
FDM algorithm and 5583 for the CDA algorithm. 

Thus, in order to increase the performance and shorten 
execution times of the two algorithms for large data sets 
with small support factors is necessary to increase the 
number of processors. 

The comparison of the performance of the CDA and FDM 
algorithms for the same data set distributed on 4 sites and 
for different support factors is shown in Figure 3. It is 
noticeable that the performance of the algorithms increases 
with the support factor, but the FDM algorithm presents a 
better performance than the CDA algorithm. 
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Figure 3. Scalability by support (D1 10M) 

 
5. Conclusions 
 
From the experiments made, resulted a good scalability for 
the CDA and FDM algorithms, relative to different 
support factors for a large data set. It is also noticeable that 
increasing the support factor also increases the 
performance of the algorithms. Also good performances 
were obtained when the support factor was low and the 
data set large, but the number of processors increased. 
These results show the fact that the increase in processor 
number should be done relative to the dimension of the 
data set. Thus, for a relatively small data set, the large 
increase in processor number can lead to large sets of local 
candidates and a large number of messages, thus 
increasing the execution time of CDA and FDM 
algorithms. 

The CDA algorithm has a simple synchronization scheme, 
using only one set of messages for every step, while the 

FDM algorithm uses two synchronizations and the same 
scheme as CDA. 

For the test the FDM algorithm generates a smaller 
candidate set and also uses a smaller number of messages 
than the CDA algorithm, thus leading to a smaller 
execution time for the FDM algorithm. The 
communication optimization for the FDM algorithm is 
done using polling-sites. 

If the data is evenly distributed between sites, the CDA 
and FDM algorithms produce the same results, but if the 
data is not evenly distributed between sites, the 
performance of the FDM algorithm increases. 

The distributed mining algorithms can be used on 
distributed databases, as well as for mining large databases 
by partitioning them between sites and processing them in 
a distributed manner. The high flexibility, the scalability, 
the small cost/performance ratio and the connectivity of a 
distributed system make them an ideal platform for data 
mining. 
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