

A COMPARATIVE STUDY OF DISTRIBUTED ALGORITHMS

IN MINING ASSOCIATION RULES

Cornelia Győrödi*

*Department of Computer Science, Faculty of Electrotehnics and Informatics
University of Oradea, Oradea, ROMANIA

E-mail: rgyorodi@rdsor.ro or cgyorodi@univ.uoradea.ro

 Abstract. With the ever-growing database
sizes, we have enormous quantities of data, but
unfortunately we cannot use raw data in our day-to-
day reasoning/decisions. We desperately need
knowledge. This knowledge is in most cases in the
gathered data, but the extraction of it is a very time
and resources consuming operation. Association rule
mining finds interesting association or correlation
relationships among a large set of data items. The
paper presents some considerations about distributed
association rules mining together with a comparison
between two representative distributed algorithms,
namely CDA and FDM. The compared algorithms are
presented together with some experimental data that
leads to the final conclusions.

Keywords – Data Mining, Distributed Mining Algorithm,
CDA, FDM.

1. INTRODUCTION

The continuing growth of database sizes and mainly the
stringent need of pertinent information for decision
support increased the interest in automatic knowledge
discovery in databases.

The implicit information within databases, and mainly the
interesting association relationships among sets of objects,
that lead to association rules, may disclose useful patterns
for decision support, financial forecast, marketing policies,
even medical diagnosis and many other applications. This
fact has attracted a lot of attention in recent data mining
research (Fayyad et al. 1996). As shown by Agrawal and
Shrikant (1994), mining association rules may require
iterative scanning of large databases, which is costly in
processing. Many authors focussed their work on efficient
mining of association rules in databases [(Agrawal and
Shrikant 1994), (Han et al. 2000), (Dunham 2003),
(Fayyad et al. 1996), (Han and Kamber 2001)].

Association rule mining finds interesting association or
correlation relationships among a large set of data items

(Han and Kamber 2001). The association rules are
considered interesting if they satisfy both a minimum
support threshold and a minimum confidence threshold
(Gyorodi C. and Gyorodi R. 2002a).

A very influential association rule mining algorithm,
Apriori (Agrawal and Shrikant 1994), has been developed
for rule mining in large transaction databases. Many other
algorithms developed are derivative and/or extensions of
this algorithm. A large step forward in improving the
performances of these algorithms was made by
introduction of a novel, compact data structure, called
frequent pattern tree, or FP-tree (Han J. et al. 2000), and
the associated mining algorithms, FP-growth (Han J. et al.
2000). Although these studies are on sequential data
mining techniques, algorithms for parallel mining of
association rules have been proposed recently [(Cheung et
al. 1996), (Agrawal and Shafer 1996)].

The development of distributed algorithms for efficient
mining of association rules has importance, based on the
following reasoning. (1) Databases may store a huge
amount of data. Mining association rules in such databases
may require substantial processing power, and a
distributed system is a possible solution. (2) Many large
databases are distributed at different sites. Based on these
observations, the study of efficient distributed algorithms
for mining association rules is very important. Further
more, a distributed mining algorithm can also be used to
mine association rules in a single large database by
partitioning the databases among a set of sites and
processing the task in a distributed manner.

This study assumes that the database to be studied is a
transaction databases. The databases consist of a huge
number of transaction records, each with a transaction
identifier and a set of data items, and it is “horizontally”
partitioned and allocated to the sites in a distributed
system which communicates by message passing.

This paper presents a comparative study of the most
important distributed algorithms used in association rules
mining CDA (Count Distributed Algorithm) (Agrawal and

Shafer 1996) and FDM (Fast Distributed Mining of
association rules) (Cheung et al. 1996). It also includes a
performance study that shows the advantages and
disadvantage of the distributed algorithms CDA and FDM.

2. Problem Definition

The basic problem definition of association rules mining is
given in (Agrawal and Shrikant 1994). Here are presented
only the aspects that are specific to association rules
mining in a distributed environment. Let D a transactional
database with P transactions. Suppose that there are n sites
S1, S2, ..., Sn in a distributed system and that the database is
correspondently partitioned on the n sites into {D1, D2, ...,
Dn}.

Let Pi denote the dimension of partition Di for i = 1, ..., n.
Also let X.sup and X.supi denote the support factor of the
itemset X from D and respectively Di. X.sup is known as
the global support counter, and X.supi as the local support
counter for site i. For a given minimum support s, X is
globally frequent if X.sup ≥ s × P, correspondently, X is
locally frequent at site Si, if X.supi ≥ s × Pi. In the
following, L will correspond to globally frequent itemsets
from D, and L(k) to globally frequent k-itemsets from L.
The main goal of a distributed association rules mining
algorithm is finding the globally frequent itemsets L.

3. Distributed Algorithms in Association Rules

Mining

According to (Dunham 2003) most parallel or distributed
association rule algorithms strive to parallelize either the
data, known as data parallelism, or the candidates,
referred to as task parallelism. With task parallelism, the
candidates are partitioned and counted separately at each
processor. Obviously, the partition algorithm would be
easy to parallelize using the task parallelism approach.
Other dimensions in differentiating the parallel association
rule algorithms are the load-balancing approach used and
the architecture. The data parallelism algorithms have
reduced communication costs over the task, because only
the initial candidates (the set of items) and the local counts
must be distributed at each iteration. With task parallelism,
not only the candidates but also the local set of
transactions must be broadcast to all other sites. However,
the data parallelism algorithms require that memory at
each processor be large enough to store all candidates at
each scan (otherwise the performance will degrade
considerably because I/O is required for both the database
and the candidate set). The task parallelism approaches
can avoid this because only the subset of the candidates
that are assigned to a processor during each scan must fit
into memory. Since not all partitions of the candidates
must be the same size, the task parallel algorithms can
adapt to the amount of memory at each site. The only
restriction is that the total size of all candidates be small
enough to fit into the total size of memory in all processors

combined. Performance studies have shown that the data
parallelism tasks scale linearly with the number of
processors and the database size. Because of the reduced
memory requirements, however, the task parallelism may
work where data parallelism may not work.

3.1. The CDA Algorithm

One data parallelism algorithm is the count distribution
algorithm (CDA). The database is divided into p partitions,
one for each processor. Each processor counts the
candidates for its data and then broadcasts its counts to all
other processors. Each processor then determines the
global counts. These then are used to determine the large
itemsets and to generate the candidates for the next scan.
The algorithm according to (Dunham 2003) is shown
below.

Input:
I // itemsets
p1, p2, …pp //processors
D = D1, D2, …Dp //database divided into
partitions
s //support
Output:
L //large itemsets
Count distribution algorithm:
Perform in parallel at each processor p1;
//count in parallel
k = 0; //k is used as the scan number
L = ∅;
C1 = I; //initial candidates are set to be the items
repeat

k = k + 1;
Lk = ∅;
for each Ii ∈ Ck do

c1
i = 0; //initial counts for each itemset are 0

for each tj ∈ D1 do
for each Ii ∈ Ck do

if Ii ∈ ti then
c1

i = c1
i +1;

broadcast c1
i to all other processors;

for each Ii ∈ Ck do //determine global counts
ci = ∑p

l=1 = c1
i;

for each Ii ∈ Ck do
if ci ≥ (s × | D1 ∪ D2 ∪ … ∪ Dp|) then

Lk = Lk ∪ Ii;
L = L ∪ Lk;
Ck+1 = Apriori-Gen(Lk)

until Ck+1 = ∅.

3.2. The FDM Algorithm

The FDM (Fast Distributed Algorithm for Data Mining)
algorithm, proposed in (Cheung et al. 1996) has the
following distinguishing characteristiques:

1. Candidate set generation is Apriori-like. However,
some interesting properties of locally and globally
frequent itemsets are used to generate a reduced set of
candidates at each iteration, this resulting in a
reduction in the number of messages interchanged
between sites.

2. After the candidate sets were generated, two types of
reduction techniques are applied, namely a local
reduction and a global reduction, to eliminate some
candidate sets from each site.

3. To be able to determine if a candidate set is frequent,
the algorithm needs only O(n) messages for the
exchange of support counts, where n is the number of
sites from the distributed system. This number is much
less than a disrect adaptation of Apriori, which would
need O(n2) messages for calculating the support
counts.

The algorithm according to (Cheung et al. 1996) is shown
below.

Input:
DBi //database partition at each site Si
Output:
L //set of all globally large itemsets
Algorithm:
Iteratively execute the following program fragment (for the k-
th iteration) distributively at each site Si. The algorithm
terminates when either L(k) = ∅, or the set of candidate sets
CG(k) = ∅.

if k = 1 then

Ti(1) = get_local_count(DBi, ∅, 1)
else {

CG(k) = ∪n
i=1 CGi(k) = ∪n

i=1 Apriori_gen(GLi(k-1))
Ti(k) = get_local_count(DBi, CG(k), i) }

for each X ∈ Ti(k) do
if X.supi ≥ s × Di then

for j = 1 to n do
if polling_site(X) = Sj then

insert 〈X, X.supi〉 into LLi,j(k)
for j = 1 to n do

send LLi,j(k) to site Sj
for j = 1 to n do {

receive LLj,i(k)
for each X ∈ LLj,i(k) do {

if X ∉ LPi(k) then
insert X into LPi(k)

update X.large_sites } }
for each X ∈ LPi(k) do

send_polling_request(X);
reply_polling_request(Ti(k))
for each X ∈ LPi(k) do {

receive X.supj from sites Sj
where Sj ∉ X.large_sites

X.sup = ∑n
i=1 X.supi

if X.sup ≥ s × D then
insert X into Gi(k) }

broadcast Gi(k)

receive Gj(k) from all other sites Sj, (j ≠ i)
L(k) = ∪n

i=1 Gi(k)
divide L(k) into GLi(k), (I = 1,…,n)
return L(k).

4. Comparative Study

The data set used for testing the performance of the two
algorithms, CDA and FDM, was generated according to
(Agrawal and Shrikant 1994), by setting the number of
items N = 100, and the maximum number of frequent
itemsets |L| = 3000, also the mean dimension of a
transaction |T| = 10. To test the described algorithms 2 to 5
workstations with the following configuration: Pentium 4
at 1.5GHz, 512 MRAM, Windows 2000 Professional OS
and 100Mb Ethernet network were used. The algorithms
were implemented in Java 1.4. To study the algorithms the
support factor was varied between 0.5% and 40%.

A first result, obtained by testing the two algorithms on
data sets with 50000 to 520000 transactions and, as
mentioned before, using between 2 and 5 workstations
with a support factor of 5% is shown in Figure 1. This
figure shows that the performance of the algorithm
depends on the number of processors and the number of
transactions. For a data set with 520000 transactions that
was distributed on two workstations, the execution time
for the CDA algorithm was 5583 seconds and for the FDM
was 4055 seconds, while the same data set distributed on
five workstations produced an execution time of just 1161
seconds for the CDA algorithm and 892 seconds for the
FDM algorithm. So, in order to obtain fairly small
execution times, we need to increase the number of
processors if we increase the number of transactions of the
data set.

For a relatively small data set distributed on a large
number of workstations the execution time could be quite
long because the local sets of candidates obtained for each
site is large and the communication time between sites
becomes considerable, as well. For example for a data set
with 110000 transactions distributed on 2 sites the
execution time for the CDA algorithm was 88 second and
for the FDM algorithm 68 seconds, while the same data set
distributed on 5 sites the execution time has risen to 120
seconds for the CDA algorithm and to 88 seconds for the
FDM algorithm. Thus, when increasing the number of site
(processors) the dimension of the data set must be taken
into account. For a relatively small data set an increase in
number of processors could lead to large sets of local
candidates and a large number of messages transmitted
between sites, thus, leading to an increase in execution
time for the CDA and FDM algorithms.

Figure 1 shows that the performance of the
algorithms increases with the number of processors, but
the FDM algorithm has better performance than the CDA
algorithm for the same number of processors and the same
dimension of the data set, and a support factor of 5%.

0,00

1000,00

2000,00

3000,00

4000,00

5000,00

6000,00

50 80 110 150 190 300 400 520
Transactions (K)

Ti
m

e
(s

)

Nr Processors: 2 CDA Nr Processors: 2 FDM Nr Processors: 3 CDA Nr Processors: 3 FDM
Nr Processors: 4 CDA Nr Processors: 4 FDM Nr Processors: 5 CDA Nr Processors: 5 FDM

Figure 1. Scalability by transactions and number of processors (sites) (5% support)

0,00

1000,00

2000,00

3000,00

4000,00

5000,00

6000,00

5 10 15 20 25

Support (%)

Ti
m

e
(s

)

Nr Processors: 2 CDA Nr Processors: 2 FDM Nr Processors: 3 CDA
Nr Processors: 3 FDM Nr Processors: 4 CDA Nr Processors: 4 FDM
Nr Processors: 5 CDA Nr Processors: 5 FDM

Figure 2. Scalability by support and processors (sites) (D1 520K)

Figure 2 shows that the CDA and FDM algorithms present
a good scalability relative to the different support factors,
for a large data set with 520000 transactions. The
performance of the algorithms increases with the support
factor. Also if the number of processors is increased, the
performance is quite good for a small support factor of
only 5%. So, for a data set with 520000 transactions
distributed on 5 workstations and a support factor of 5%
the execution time for the FDM algorithm is 892 seconds
and for the CDA algorithm is 1161 seconds, meanwhile,
for the same data set distributed on 2 workstations, the
execution times increased five times, reaching 4055 for the
FDM algorithm and 5583 for the CDA algorithm.

Thus, in order to increase the performance and shorten
execution times of the two algorithms for large data sets
with small support factors is necessary to increase the
number of processors.

The comparison of the performance of the CDA and FDM
algorithms for the same data set distributed on 4 sites and
for different support factors is shown in Figure 3. It is
noticeable that the performance of the algorithms increases
with the support factor, but the FDM algorithm presents a
better performance than the CDA algorithm.

0,00

20000,00

40000,00

60000,00

80000,00

100000,00

120000,00

140000,00

160000,00

0,5 1 2 3 5 10 15 20 25 30 35 40

Support (%)

Ti
m

e
(s

)

Nr Processors: 4 CDA Nr Processors: 4 FDM

Figure 3. Scalability by support (D1 10M)

5. Conclusions

From the experiments made, resulted a good scalability for
the CDA and FDM algorithms, relative to different
support factors for a large data set. It is also noticeable that
increasing the support factor also increases the
performance of the algorithms. Also good performances
were obtained when the support factor was low and the
data set large, but the number of processors increased.
These results show the fact that the increase in processor
number should be done relative to the dimension of the
data set. Thus, for a relatively small data set, the large
increase in processor number can lead to large sets of local
candidates and a large number of messages, thus
increasing the execution time of CDA and FDM
algorithms.

The CDA algorithm has a simple synchronization scheme,
using only one set of messages for every step, while the

FDM algorithm uses two synchronizations and the same
scheme as CDA.

For the test the FDM algorithm generates a smaller
candidate set and also uses a smaller number of messages
than the CDA algorithm, thus leading to a smaller
execution time for the FDM algorithm. The
communication optimization for the FDM algorithm is
done using polling-sites.

If the data is evenly distributed between sites, the CDA
and FDM algorithms produce the same results, but if the
data is not evenly distributed between sites, the
performance of the FDM algorithm increases.

The distributed mining algorithms can be used on
distributed databases, as well as for mining large databases
by partitioning them between sites and processing them in
a distributed manner. The high flexibility, the scalability,
the small cost/performance ratio and the connectivity of a
distributed system make them an ideal platform for data
mining.

REFERENCES

Agrawal R. and Srikant R. (1994). “Fast algorithms for
mining association rules in large databases”. Proc. of 20th
Int’l conf. on VLDB: 487-499.

Han J., Pei J., Yin Y. (2000). “Mining Frequent Patterns
without Candidate Generation”. Proc. of ACM-SIGMOD.

Gyorodi C. and Gyorodi R. (2002a). “Mining
Association Rules in Large Databases”. Proc. of Oradea
EMES’02: 45-50, Oradea, Romania.

Dunham M. H. (2003). “Data Mining. Introductory and
Advanced Topics”. Prentice Hall, ISBN 0-13-088892-3.

Fayyad U.M., et al. (1996). “From Data Mining to
Knowledge Discovery: An Overview“, Advances in
Knowledge Discovery and Data Mining:1-34, AAAI Press/
MIT Press, ISBN 0-262-56097-6.

Han J. and Kamber M. (2001), “Data Mining Concepts
and Techniques”, Morgan Kaufmann Publishers, San
Francisco, USA, ISBN 1558604898.

Cheung D. W., Han J., Vincent T. Ng., and Ada W. Fu.
(1996). ”A fast distributed algorithm for mining
association rules”. In Proceedings of IEEE 4th

International Conference on Parallel and Distributed
Information Systems, pages 31-42, December.

Agrawal R. and Shafer J. C. (1996). “Parallel mining of
association rules: Design, implementation and experience”.
In IBM Research Report.

BIOGRAPHY

Cornelia Győrödi was born on 13th April 1970, Oradea,
Romania. She graduated in Computer Engineering the
"Politehnica" University of Timisoara (Romania) in 1994
and received her PhD in Computer Science in 2003 from
"Politehnica" University of Timisoara as well. Her current
research interests include artificial intelligence, neural
networks, database management systems, knowledge
discovery in databases and data mining techniques in
different domains such as databases. She participated in
different TEMPUS financed projects. She is author/co-
author of 3 books, and more than 35 published papers, in
the aforementioned fields, many of them abroad. Mrs.
Győrödi is a lecturer at University of Oradea, Romania.

